

ENERGY COMMON KNOWLEDGE

WHAT IS HYDROGEN?

Hydrogen Facts

THE FIRST HYDROGEN POWERED CAR WAS INVENTED IN 1806

BY FRANCHOIS ISAAC DE RIVAZ

2014 1 st MASS-PRODUCED FCEV: HYUNDAI TUCSON FUEL CELL

MOST ABUNDANT CHEMICAL STRUCTURE IN THE UNIVERSE.

LIQUID HYDROGEN NASA
WAS USED BY
TO LAUNCH SHUTTLES IN TO SPACE

40-60%

EFFIENCY OF HYDROGEN ENERGY BY FUEL CELL DRIVETRAINS

INTERNAL COMBUSTION ENGINES
USE ONLY ABOUT 20% OF ENERGY FROM GASOLINE

Hydrogen contain a lot of Energy!

VEHICLE COMPARISON FOR 500 KM DISTANCE

Recycle and Environmental Issue					
	BATTERY	DIESEL TANK	HYDROGEN TANK		
Life span of energy source	Short	Long	Long		
Recyclability	Difficult disposal	Can recycle the tank	Can recycle the tank		
Carbon emission	0 emission locally	500km will give 6.6 kg of CO2 emission	0 emission locally		

VERSATILE APPLICATIONS IN TRANSPORTATION

Transportation

The transportation sector will be a key enabler of the hydrogen economy

Fuel Cell Electric Vehicles (FCEV) will complement Battery-Electric Vehicles (BEV)

to achieve decarbonisation of the transport sector.

Fuel Cells' applications are best suited for:

- long-range requirements
- heavier loads
- when in need of flexibility

Perfect for ships, trains, trucks

Ship

Heavy load ship

FCEVs Great Advantages:

- Short refueling times
- The manufacturing and refueling of FCEVs can use the same established process and infrastructure as conventional cars

Applications

More than 350,000 hydrogen trucks could transport goods, and 50,000 hydrogen buses, thousands of trains, and passenger ships could transport people, without carbon and local emissions.

By 2032,

we can expect about 5,000 refueling stations in the world.

In 2017, there are over

49 public hydrogen refueling stations in Europe, 90 in Japan and 39 in the US.

Source: Information Trends, Hydrogen Fueling Stations: A Global Analysis, October 2017 https://www.cio.com/article/3159680/car-tech/hydrogen-refueling-stations-for-cars-to-reach-5000-by-2032.html

Sources for stations by country
Europe: https://h2me.eu/about/hydrogen-refuelling-infrastructure/
Japan: https://asia.nikkei.com/Politics-Economy/Policy-Politics/Japa

Japan: https://asia.nikkei.com/Politics-Economy/Policy-Politics/Japan-to-speed-growth-of-hydrogen-refueling-stations
USA: https://www.afdc.energy.gov/fuels/hydrogen_locations.html

VERSATILE APPLICATIONS

Power-to-Gas

Grid & Renewables Integration

Hydrogen acts as a buffer to increase grid resilience, and grid balancing (matching supply to demand.)

Large-scale renewable integration because it provides cost-effective long-term and seasonal storage. Lossless Distribution of energy across sectors and regions.

Renewable Energy Storage

- Hydrogen mountain shelter in the Col du Palet (2,600m)
- European islands gain energy independence and security by utilizing wind and solar power to create hydrogen. Isolated from the mainland, they are empowered to create their microgrid Example: The Orkney islands, from the Scottish archipelago

Industrial Use

Backup Power

- Telecommunications industry

Communication centers

- First response, hospitals

Control center, traffic signalsDisaster prone areas

decarbonized

55 Million tons of hydrogen is used in refining, fertilizer, and chemical production.

Combined Heat and Power (CHP)

Hydrogen is a cost-effective option to decarbonize buildings' heat and power.

SETTING UP ENERGY STATIONS WITH DIFFERENT ENERGY SOURCES

Energy storage for 1,000 cars

PHI SUEA HOUSE ENERGY FACTS

CLIMATE CHANGE

How to stop Climate Change?

To limit global warming to 2°C, we need to increase share of renewables from

Source: Hydrogen Council, Hydrogen scaling up, November 2017 (p.58)

Hydrogen is the solution

The transportation sector would consume 20 million fewer barrels of oil per day, and domestic energy security would rise significantly. Hydrogen would contribute roughly 20% of the additional abatement required to limit global warming to two degrees Celsius.

HYDROGEN SAFETY

Hydrogen is Safe

HIGH DIFFUSIVITY

Smallest and lightest element It rises and disperses very quickly. It travels at 50 meters per second.

LOW RISK IGNITION

Extremely safe if located in ventilated space

Hydrogen can ignite ONLY IF it reaches at least 4% concentration in the air AND IF there is a spark, flame, etc.

HYDROGEN VS GASOLINE

Relief valve failure (leaking tank) with electrical spark to ignite fuel

77

Fire Diamond

- FlammabilityHealth
- Reactivity
- Special notice

Flammable gas
No health hazard
Normally stable,
not reactive with water

None

CNG, LPG, NGV

HINDENBURG Example

HINDENBURG CRASH CANNOT HAPPEN AGAIN IN MODERN HYDROGEN SYSTEMS AND FUEL CELL CARS

- Hindenburg was originally designed to be operated with helium, but the Helium Control Act prohibited its export outside of the US.
- Its structure was defective, so there was a hydrogen gas leak
- The airship was not pressurized, so the leak was slow and flames travelled inwards
- Weather conditions caused an electrostatic discharge (spark), which ignited the leaking gas

Such a disaster is not possible if hydrogen is contained properly in pressurized tanks and surrounding materials do not catch fire easily

ENERGY STORAGE COMPARISON

Characteristics

	BATTERIES	DIESEL	HYDROGEN STORAGE
Energy density	0.05 kWh/kg	13 kWh/kg	33.3 kWh/kg
Safety	 Complicated management system Small window of safe operation condition 	Safe and easy to handle	Safe and easy to handle, similar to CNG, LPG, etc
Environmental impact	Some dangerous materials, no recycling concept for lithium battery enabled	Dirty, noisy	No concerns
Degradation	Degrades happen, performance drops over time, required replacement every few years	High maintenance, short lifetime, frequent replacement	10,000hr+ 100 years tank Degrades slowly, 10,000hr+ lifetime for machines, 100 years for steel tanks
Strorage time	Loses charge over time	Diesel will degrade through time within 6-12 months	Can store energy indefinitely

Applications

Short-term backup (less than 4 hours)	Suitable	Suitable	Available power is determined by fuel cell
Long-term backup (more than 4 hours)	+ - ES Big and expensive	Dirty, noisy, high maintenance	Suitable
Seasonal storage	Impossible	Dirty, noisy, high maintenance	Suitable